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Abstract

Statistical characteristics (averages and variances) of heterogeneous, small size beams (micro-beams), composed of
micro-elements (grains) of randomly distributed stiffness (isotropic) is studied. Only longitudinal variations are con-
sidered. Element to beam size (length) ratio is not negligible and the use of an equivalent homogeneous structure with
the classical effective material properties is not sufficient. Using standard statistical tools (probability density and
correlation functions), it is shown that for indeterminate cases, even average deflections (obtained explicitly) are load
dependent, and are not identical with their corresponding homogeneous case. Bounds for the statistical dispersion of
deflections and reaction forces are found analytically for some cases of weak heterogeneity. It is shown that dispersion
parameters for indeterminate problems can be obtained by superposition (using both averages and dispersion data) of
corresponding determinate cases, leading to reciprocal type relations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction and motivation

The analysis, prediction and testing of the mechanical behavior (stiffness, strength, creep, fatigue, wear,
etc.) of micro-electro mechanical systems (MEMS) and other “‘small scale” structures, pose new challenges
in many fields: development of processing technologies, measurement tools, material analysis and char-
acterization etc.

One of the emerging problems in the design of micro-mechanical systems, which is specifically related to
their size, is the relatively small ratio between the characteristic size of micro-scale-structures (MSS), like beams,
plates, etc., and the size of their basic elements (crystal grains). MSS having several microns (and less) thickness,
made from polycrystals with grains of the same size order, are routinely built and used for many applica-
tions. For these working scales, the homogeneous assumption (using effective properties) may not be valid.

The common production method of MSS consists of preparing many “identical” parts from a single
polycrystal (metal or ceramic) sheet (film, wafer). Since the local crystal direction and grain geometry vary
from point to point, all MSS are effectively identical “in some average sense’’, when their characteristic size
is sufficiently large compared to the size of a single grain. For small size (say, less then 20 grains in at least
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one “active” direction), each MSS cut from the same wafer will produce a different deflection for the same
external load (stiffness distribution), or might have a different strength (external load at breakage, yield
etc.). When high performance and reliability is required, as for micro-size sensors, actuators etc, this dis-
tribution (reliability), not seen in macro-size structures, may be a crucial factor in their design, production
and control. Standard “effective stiffness” methods (Hashin and Shtrikman, 1962; Willis, 1977; Kroner,
1986), which use a representative volume element (RVE), are not sufficient here, due to the finite size of the
inhomogeneous material space.

A practical example of a basic MSS that will be studied here resembles a polysilicon simple cantilever
beam, often used in MEMS (Howe and Muller, 1983; Howe, 1988; Madou, 1997; Jones et al., 1998) under
various loads. Polysilicon is one of the prime materials used extensively in the MEMS and micro-electronic
industry (Kamins, 1998). It is an ideal brittle (linear elastic) material at room temperature and there are
verified methods for the production of wafers with controlled grain size (0.03-100 pm) and orientation
(from preferred 110 to random) distributions (Kamins, 1998).

A few hundred micro-beams may be produced from a single polysilicon plate by MEMS technologies
(Serre et al., 1998, 1999), from which the statistical data is derived. Recent experimental capabilities of
examining the detailed material micro-structures is pushing the theoretical work on effective properties of
materials to new levels of insight (Beran et al., 1996; Mason and Adams, 1999). These new findings show
that crystallographic texture, especially various statistical correlation functions between elastic properties
of neighbor grains, play a major role in the construction of overall effective properties.

In spite of the above progress, the problem of random mechanical response of micro-structures (de-
flections, forces etc.), emerging from the element/structure size ratio received very little attention, and has
been noticed only recently (Madou, 1997). A preliminary study, which addresses a simple cantilever
problem (Mirfendereski et al., 1992) used finite element analysis to show the general statistical dispersion
effect, but the insight level is still in its infancy. Recent theoretical studies on “small RVEs”, which also
focus on the statistical distribution of small-scale composite structures are also related to the present study
and are noted (Drugan and Willis, 1996; Ostoja-Starzewski, 1998). Of special relevance is the study of a
heterogeneous beam (Beran, 1998), with special crystal anisotropy, for which the grain size is in the order of
the thickness, but very small compared to the beam length. This case is not treated here.

Therefore, the relation between deflection statistics of micro-beams and material texture is the main goal
of this study. Mechanical behavior (bounds on the average deflections) of heterogenecous beams were
studied in the past (Somoroff, 1970), but no consideration has been given to the above “element to global”
size effects, and no dispersion analysis presented.

The general heterogenecous beam problem has few complexities: non-isotropic elements (i.e., coupling
between extension and shear), heterogeneity in three directions and non-linear effects (geometrical or
material). This study assumes Bernoulli linear beams, the anisotropic crystal effect are neglected and the
heterogeneity (variations) is considered in the longitudinal direction only. This study is a first approxi-
mation towards a more realistic micro-beams case, in which transverse (through the thickness and/or width)
heterogeneity will also be taken into account.

The elementary problem of a heterogeneous cantilever beam under a concentrated load is studies first
(Section 2), considering discrete and continuous stiffness distribution. A generalization to a single inde-
terminacy beam under general loading is studied in Section 3. Finally, multiply constraint case under
general loading is analyzed in Section 4.

Kroner’s (1986) elegant mathematical notations are followed here. Statistical properties of random
functions (say, S) are: (S) =ensemble average, ' = S—(S) = deviation from the average, S = S/(S)
normalization by the average, S = S/S, = normalization by another non-random value, s = S'/(S)
normalized deviation. Therefore, ((S)?) is the normalized variance of S. Mathematical definitions and
relations and some manipulations are outlined in the appendix. Other notations are directly presented in
the text.
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2. Simple cantilever beam under a concentrated load
2.1. Discretely varying compliance

Consider a simple “Bernoulli cantilever” of length L, loaded by a concentrated force F at the free edge
(shown schematically in Fig. 1).

The beam is made of n elements (grains) of equal size, each having a Young modulus (compliance) E;(S;)
which is a random variable. Cross-section properties (relevant moment of inertia /) is equal for all elements.
The aim is to find basic statistical parameters (average and variance) of the deflection at the edge
(w(x =0)). Denote the internal bending moment by M (x) and the total elastic energy by U, for each re-
alization (linear analysis, small deformations), we have

n kL/n 2
[ e
— Ju-1yLm Ex

0 o [F M? F [t X F
w(x=0,n) v /o—dx:_/o x_dx:7

TOF OF ), 2E()I I J, Ex)
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ykz_l:(&f e =3 (SkCi), (2.1)
where
. B —(k—1)
Sy =E; ", C, = % (2.2)

C; is the “‘relative deflection weight” of element k, which is parabolic with the distance from the edge
(kL/n). It means that the sensitivity of w(0) to a stiffness (compliance) variation is higher for elements near
the fixed end (x = L). Notice also that since Eq. (2.1) is valid for a uniform (homogeneous) beam too, and
C; is independent of S,

n

> () =1. (2.3)

k=1
Taking N samples from the same plate (N large enough), we get
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Fig. 1. Multigrain beam. Each grain takes the full thickness.
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Suppose that all compliances S; are random variables of the same statistical distribution (statistical
homogeneity), having an average value

(Sk) = (S). (2.5)

Then,
FL3

(w(0;n)) = ?<S> = W), (2.6)
where w, is the end deflection of an equivalent homogeneous beam having a compliance (S). Therefore,
Eq. (2.6) coincides with the classical “effective moduli solution” using an RVE. The above is valid for any
spatial (statistically homogeneous) compliance distribution S;. When S; and §,, are uncorrelated (m # k),
w(0;n) is a sum of uncorrelated random functions, multiplied by non-random factors C, (2.2). Therefore,
by the central mean theorem, the probability of w(0; n) converges to a normal distribution as n — co with a

constant average of value as in Eq. (2.6). The deflection variance is found by

(%) = <<W22>> = <<ick(§k - 1)) > = <<ZnZCk§;> > = Vo + Ak, (2.7)
Win) =1 k=1

/o <zc,3§’z>; Vi = z<z< 3 ckcmszﬁ;) > )
k=1 m=1 \k=m+1

where ¥} is the deflection variance of the non-correlated case and AV} is the deviation due to such corre-
lation. Then,

o —2 - =
Vy = (Zc;) (S) = (Zc,f) V(S). (2.8)
k=1 k=1
It can be also shown that

" 1[31 9
Y G= — {?(n +1) =15+ 1> +17n+1) =9(n+1)* +3(n+ 1° —1]. (2.9)
k=1

Therefore, for the uncorrelated case, the variances of S and w(0) for large n are related by:
9
Vo(w(0;n > 1)) %51/(8). (2.10)

It is useful to compare this result with the ‘equal weight’ case. There, C, = 1/n and the factor in Eq.
(2.10) is simply 1/n. Therefore, the value (9/5) reflects the increased statistical dispersion of the end de-
flection due to an unequal contribution of the grains as a function of their position. It will be shown that the
equal weight case gives a lower dispersion bound.

For demonstration purposes, consider a realistic example of a polysilicon beam made from 15 grains
(order of magnitude). The modulus of each element is a function of the crystal orientation. For silicon, the
maximum and the minimum Young’s modulus values are 190 and 130 GPa respectively (Wortman and
Evans, 1965). Using Eq. (2.10) and an equal distribution of modulus in the above range we get

V(S)=0.132 = V(@(0;n=15)) = 0.045%. (2.11)

Finite element calculations of a cantilever beam using Monte—Carlo simulations have been done else-
where (Mirfendereski et al., 1992). There, the anisotropic effects of polysilicon were taken into account,
with no neighbor correlation. The morphology consisted of n ~ 15 elements along the beam length and an
average of less than two grains through the thickness. It was found that V' (w(0;n = 15)) 22 0.04%, which is in
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a good agreement with Eq. (2.11). However, as will be seen in the following, real specimens are expected to
show much higher dispersion values. The reason is that neighbor crystal orientations are definitely cor-
related. Therefore, Eq. (2.11) can be considered as a lower estimate for a real micro-beam.

The most important factor of the statistically correlated case is the ratio AV;/V,, which reflects the
relative two points’ correlation effect. From Eq. (2.7b), the translation symmetry can be used. Define the
two-point correlation function by

¢ = (S:Si,), 0<¢, <. (2.12)
Then,
n—1 n—j e n—1 n—j n—1
AVy =23 CiCif(S,S,,,) = 2D 6> CiCiyy =2 _¢,9;, (2.13)
j=1 k=1 j=1 k=1 j=1
where @; can be written as:
D, = 108 [2n — 2j 4 151%j + 30,20 — 45jn* — 10n* — 572 — 3/° + 18n"] (2.14)
’ n

with a leading term of 9/5 too. Eq. (2.13) is a sum of two point correlation terms which vanish as j (the
distance between neighbors) becomes large, and the real distribution function will have to be taken from
experiments. However, important insight can be achieved even if a simple function is assumed. Consider the
first-order auto-regression model (Box and Jenkins, 1970):

¢, = ¢, (2.15)

where ¢, = ¢ is the only coefficient controlling the two points correlation. ¢ = 0 means that there is no
correlation between the compliance of any two grains, while ¢ = 1 represents a perfect correlation, i.c., all
grains of the same beam have the same compliance (essentially, beams of a single grain). Between these
extremes, ¢ is directly related to the correlation “length” by the following:

¢; = ¢’ = exp[jln ()] = exp[—j/jen], (2.16)
where j, is the characteristic correlation distance
Jen = —1/1In(¢h). (2.17)

In real polycrystals, jq, is in the order of the average grain size. Having ¢, it is possible to plot AV, /¥, vs
Jen for various values of n and examine the correlation effect, as shown in Fig. 2. Results for five values of n
over three orders of magnitude show that the curve converges to a linear relation as n > 2000. In all cases
shown, the correlation effect on the deflection variance is considerable. For example, for » = 60 and an
effective correlation distance of only 2, the relative deviation AV; /¥, is ~2.6, i.e., about 60% increase in the
deflection statistical standard deviation as compared to the uncorrelated case.

The asymptotic line in Fig. 2 can be found analytically and permits important insight. j., can be con-
sidered roughly as a distance beyond which no correlation exists. Therefore, it is expected that the edge
deflection variance should be the same as for a beam having n/2j., non-correlated grains (this is since the
correlation range extends to both sides of each grain). It means that

% o Vu[nu = n/zjch] - Vu[nu = I’l]
Vo B Vu[nu :}’l] ,

(2.18)

where ¥, is the variance for the uncorrelated case with n, elements. Since ¥, is proportional to 1/n, (2.9), we
get from Eq. (2.18)
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Fig. 2. Effect of correlation distance (j) on the relative dispersion of cantilever beam end deflection.

_ 2jch/n — 1/

A% ) L2 — 1 (2.19)

14 l/n
which means that the asymptotic curve of Fig. 2 should be linear with a slope of 2, and cut the j, line at 0.5.
The asymptotic relation of Eq. (2.19) was added to Fig. 2 (arrows on edges) for comparison, and confirms
the above predictions. Note that the results for j, < 0.5 (i.e., a “bundle” below 1 grain) is not physical.

Another asymptotic behavior is seen if j, approaches n (¢ — 1). The beam acts like a single grain, and
therefore, from Egs. (2.7a) and (2.7b)
AV, S5n
—( =—-1 2.2

I/O (]Ch - T’l) 9 ( 0)
which can be confirmed by checking that the asymptotic slopes in Fig. 2 for large j, tend to 5/9. It can be
seen that the n = 20 line approaches this value “quicker” than the other lines, since j, approaches n
“faster” for smaller n.

2.2. Continuously varying compliance

The aim of this paragraph is to compare the previous analysis to the case where S(x) is a continuously
varying function, and see if new insight is gained. Assume the same cantilever, loaded by a concentrated
force F at x = 0. From Eq. (2.1), for a statistically homogeneous beam

F FL

w0 =7 [ P =T (50) [ v =T 5) = wiy (2.21)

as expected. Using Eqgs. (2.1) and (2.21), the displacement variance is found by

1l
v@o) = [ [ #8Eis)dndn (222)
o Jo
where from here on, all position values (x) are normalized by L, and
S) =S, =S(x) — 1. (2.23)

Similar to the characteristic length (/) considerations for the discrete distribution, consider an idealized
case where there is a complete compliance correlation inside a specific range Ax/L = 4, and a totally non-
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correlated relation outside this range. A good (but not fully identical) example is the case where neighbor
grain orientation is uncorrelated, but fully correlated within the grain. Then,

<2 xXp—X
<S/1S'2):{<S )i |%|_<)»}, i<l (2.24)
0; otherwise
Inserting Eq. (2.24) in Eq. (2.22) we have
F2 1 . X1+4 F2L6 _ 1 1
V(w(0)) = 7 / <S/2>xf dx, / xdx, = e <S’2> (52/1 + §2}v3>. (2.25)
0 xX|—4

For small enough, but still finite /4 (equivalent to large » in the discrete heterogeneous case), the dis-
placement and compliance variances are related by

V() = VS22, 1 =", (2.26)

where 1, is the second-order “dispersion factor”. It can be shown that #, is invariant with regard to the
specific “shape” of (S]S5) inside /, but on the average value only. Thus, 4 is a convenient scale parameter
for defining three distinct levels of morphology, each deserving a different degree of analysis: (a) macro-
scale (A — 0), for which the classical RVE approach is appropriate, (b) mesoscale (4 < 1), for which only
the correlation length is important, and (c) micro-scale (4 ~ 1), where the full correlation function is
needed. The mesoscale receives the highest attention in the sequal, due to the relative ease of analytical
manipulations and the easy insight. An additional intermediate range (1 ~ 0.1), where second-order per-
turbations is needed, are also important, but will not be studied here.

Returning to Eq. (2.26), the value of #, comes directly from the power (2 in this case) of x in the basic
beam deflection equation (2.1): 9 = (24 1)(2+ 1), 5= (2 x 2) 4+ 1. This power is related to the square of
the bending moment M (x).

In order to generalize this observation, assume that the bending moment is some power function of x. It
is easy to show that

L k1) 4k
M) xx* —n= Q1 = e (2.27)
from which #, and k are related by
—00 <k <00 0 <y, <22 (2.28)

so that 7, is bounded. The loading function for these bounds can be also found. If g(x,) is the distributed
external loading function, then

M(x) = / x1q(xy) dxg. (2.29)
0
Then,
s =k =1/2) — qlx,n;) ocx™?, 2.30
> 2
0, =k =—1/2) = q(x,n5) oc x~ /), 2.31
2 2

where 75, 15 are upper and lower bounds. However, from the finiteness of the elastic energy density we
have also the condition k& > 0. Therefore, part of the domain in Eq. (2.31) is not physical and Egs. (2.28),
(2.30) and (2.31) are modified to be

0<k<ooel<n,<2  k(py)=0o0roco,  k(np3)=1/2. (2.32)
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Relations (2.32) are of major importance. They give bounds on the displacement statistical dispersion of
a heterogeneous beam for load dependent cases. More specifically, the minimum dispersion is either when
the internal bending moment is “evenly spread” (as in the case of a pure external moment at x = 0) or when
the load is “extremely’ concentrated near the clamped edge (x = L). The first is the equal statistical weight
case and the second is the case where only the S(x ~ 1) value is important. On the other limit, maximum
dispersion occurs when ¢(x) is proportional to x=%/2.

Consider next the third-order normalized dispersion function #; of w(0)

oy 13
s (w(0) = (M> 233)
(w(0))
and follow the same conditions as in Eq. (2.24)
—/3
<§’1§’2§;> _ {<S >, |x2—x1.|</1 and |X3—X2<l}, (234)
0; otherwise

the third-order relation, equivalent to Eq. (2.26) is then found as

ds(w(0)) = ds(S)(ny)* 727, =% (2.35)

Analyzing the case of a power function for the internal moment, as in Eq. (2.27), we get
1)°
M(x) o< x* — 3 = w (2.36)
(3k)” +1

for which,

0<k<ooe 1<y <4 k(n;)=0 or co, k(ni)=1/3 (2.37)
and the external loading for the maximum dispersion is

q(x,n3) ocx O, (2.38)

This procedure can be done for any dispersion power p, which yields a set of upper bounds
1-1/ ow-1_p
<y <2007 q(ny) o< x . (2.39)

Note that each upper bound is associated with a different external loading function, but lower bounds
are always related to the case of a concentrated external moment (homogeneous loading). Also,

p>l—n,~2 g x? (2.40)

and from Eq. (2.39), a general range between the two bounds is finally received for the whole statistical
spectrum and a general loading function

22 <yt <2, =1 (2.41)

3. Heterogeneous beam — indeterminacy of one degree
3.1. Field equations

Consider a cantilever beam clamped on one side and simply supported on the other, as seen in Fig. 3.
The beam is loaded externally by a distributed force g(x;), which is not random.
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Fig. 3. A non-determinate (1°) Bernoulli beam.

We are interested in finding statistical parameters of the displacement w at any point x. It is clear that,
compared to the previous (determinate) case, w(x) cannot be found by direct integration, and the governing
equation for the force R will have to be implemented in the solution. In fact, this is a simple version of a
“mixed boundary condition” in elasticity. The bending moment is

M(x) = Rx + /xoq(xl)xl dx; + P(x; — x)H (x; — x), (3.1)

where H is the common unit step function: (0 for x; < x and 1 for x; > x). Calculation of w(x) can be done
by using the dummy force P at x, and applying the minimum energy principle such that

w(x) = Z—g - = /leo S(xl)M(xl)aa—A}{dxl P:o; S(x) = [E(x)1] . (3.2)
Substituting Eq. (3.1) in Eq. (3.2) yields
wi) = [ LXS(xl)(xl — 3)(Ryy + O(x1)) dxi, (33)
where Q is the first moment of the distributed load
O(x) = /Xloq(xz)xz dx;. (3.4)
=

For later convenience, Q is normalized by an arbitrary (non-random, to be defined) force R, and Eq.
(3.3) is written in the form

W) = [ xRS + gl xRS ()] o, ()

where fand g are:

S0 x1) = (x1 —x)Q(x1); g(x,x1) = (x1 — x)x1; 0 = O/R. (3.6)

The form in Eq. (3.5) is identical to all beam problems having “one degree” indeterminancy. Therefore,
the specific example in Fig. 3 is served for illustrative purposes only. Then, using the notation from Egs.
(A.1)—(A.5), Eq. (3.5) is written as

w(x) = L’Ry(f * S+ Rg *S); R =R/Ry, (3.7)
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where all distances (x) are normalized to L. Consider an equivalent homogeneous beam, with a uniform
compliance equal to the effective one ((S) for Bernoulli beams). Then, R, is the reaction force associated
with this beam, and is found from:

wh(x = 0) =L} (f * (S) + g (S)) =0. (3.8)
In the following, R, will be the solution of Eq. (3.8), so that f and g are related by (see Appendix A):
fxl+gxI=0. (3.9)

3.2. Calculation of (R)

Our first interest is to find (R) and see if (R) = Ry,. For every heterogeneous beam from the ensemble, the
deflection at x = 0 vanishes. Using Eq. (3.7) and averaging we have

(R) = —((f*S)(g*5)"). (3.10)
Note that R is not a function of (S). The non-linearity of Eq. (3.10) calls for approximation appropriate
for “weak heterogeneity”, i.e.,
S1<1; §=(—(S)Ss)" (3.11)
Then (see Appendix A):
- 18R

S+5 —n

«*x8S + - (3.12)
255

0

R=—(fxI+f=8)gxI+g+S) "' =R

N SR
50 59

0

fis a function of (S) (through Ry) and not §’, and can be taken as constant in Eq. (3.12). Then, using Eqgs.
(3.9), (3.10), and (3.12), and averaging, the first term in Eq. (3.12) equals to 1 (macro-scale contribution),
and the second term vanishes. After few steps of algebra

(R)= 1+ (gx1) (g% (SS) = M) — (g 1) (f = I)(g * §T) xg"), (3.13)
where Eq. (A.1):
5'S =5 (x)8 (x). (3.14)

Eq. (3.13) proves that the average reaction force and the one based on a homogeneous beam with ef-
fective moduli are not the same. The normalized difference between the two (notice the expression sym-
metry) is

Lgx(S8)xg" gxS5)xfT _gx(S5)x(g+/)"

AR, = (R) — Ry = = 3.15
h=(R) h gxIlxgT gl x fT gxIl*gT ’ ( )

where Egs. (A.10) and (3.9) have been used. By Eq. (A.7), Eq. (3.14) can be written in a symmetric form as

1(f+8)*SS)x(f+g) +g*(S5)xg"—f+(S) /T
2 gxIl+gT '

AR, = (3.16)
Each of the symmetric terms in Eq. (3.16) is the variance of the end deflection of a determinate beam
discussed in Section 2. Therefore, Eq. (3.16) expresses a type of superposition, which will be further ex-
plored later.
Of special interest are the specific functions <§/§,> (material) and f (external loading), for which AR, is
extremal. When mesoscale morphology range is considered, Eq. (3.15) reduces to
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2 g*(g+f)

ARy = ifS")E s A< (3.17)

. . - —. . .
Then, a linear relation between S~ and ARy, is observed. As for the loading effect, assume a power function,
as in Section 2, so that:

_ k42 3

0 = = g fT =~ B R (3.18)
for which Eq. (3.17) is

. 2

ARy — z(sz)[%—3(kk:4)]. (3.19)

Differentiating Eq. (3.19) with respect to k, equating to zero and taking into account the finiteness
condition of the elastic energy density, we finally get

AR
12 < —p < 0.3, (3.20)
AS7)

where the lower and upper bounds correspond to k — oo and k = 0, respectively. The case for which
ARy, = 0 is also important:
k=1=q(x)=x"=f=—-g= AR, =0. (3.21)

Note that Eq. (3.21) corresponds to the case where the internal bending moment is zero, which is also a
determinate case, for which AR, is always zero (Section 2).
Another limit is the “infinite correlation range” case, i.e., beams of a single element (grain). For this case,

H_§/2g>i<11>;<(g+f)T_
h gxIlxgT

Combining Eq. (3.17) with Eq. (3.22), it is seen that AR}, has an extremum with regard to (S/El) too, but it
is not in the mesoscale range. Therefore, achieving analytic results is difficult.

0. (3.22)

3.3. Statistical variance of R

Using the same technique, it is now straightforward to calculate the variance of R, relative to Ry
V(R)

(R)?) = (R*) — (R)" = R (3.23)

Using Eq. (3.13) and Eq. (A.33), and neglecting higher order terms, we have a relatively simple (and
symmetric) result for the normalized variance:

o555y U+ ES) e’
’ g*[[*gT

(R)) = (Ry):

Note that these symmetric forms are found when normalizing R to the values of the equivalent homoge-
neous beam, and not to the real average value. For the latter we have

(RY) = (R))]1 + 2855 « (g + /)], (3.25)

The effect of external load on the statistical variance of R, is checked by inserting a power distribution
for O(x) and analyzing the sensitivity

(3.24)
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9 (k+2)° 6(k+2)
57 (2k+3) (k+4)°

O(x) = = ((R)?) = (3.26)

The only extremal point of Eq. (3.26), for which k is real and positive (elastic energy density limitations)
is
k=1—f4+g=0-(R)*) =0 (3.27)

which is the elementary lower bound, as in Eq. (3.20). The lack of an upper bound is not physical, but due
to the apparent limits of the first order perturbation taken here.

To see the physical importance of Eq. (3.24), divide the beam problem into two parts: homogeneous,
with compliance (S), and deviatoric, with compliance S’. For each part, there are two dual boundary
conditions at x = 0. For the homogeneous part,

wx=0)=0—R=R, or R=R,— wx=0)=w, (3.28)

and for the heterogeneous (stochastic) part:

wix=0)=0—V(R) or R=R,— V(wkx=0)). (3.29)
Now, since
=g#(SHS) g V(wx=0))=(f+g)*(SS)*(f+g) . (3.30)

Eq. (3.24) can be written in a convenient form as
wpV (R) = RyV (w), (3.31)

which is a reciprocal relation, similar to the familiar Maxwell theorem for linear structures. It may be used
to find the variance of an indeterminate case, by the variance of the determinate one, and the homogeneous
solution.

3.4. Displacement average

Using Eq. (3.7) and the displacement b.c., we have
W) =R 115 - 19615 (¢4 (3.32)

where integration limits are specified. As for (R), we consider the weak heterogeneity case (3.11) only.
Expansion of Eq. (3.32) near (S), neglecting higher order terms and averaging we get,

G G Lol ()

- {ﬁcixgxMAR"_g”S“ {7- g}] (3.33)

where wy,(x) is the displacement of a homogeneous beam with effective ((S)) compliance and

~ 1 1 1 ~ 1 1 1
gx)=gx)/g g =gl gx)=gx)/gs g =gxl etc. (3.34)

For the mesoscale case, Eq. (3.29) is simpler:
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g%{erg}T

8x80

Awn (x) = {f ‘j_xg ] ARy, — /l<§’2>

(3.35)

It is seen that for appropriate external load distributions and at some specific points on the beam, the
displacement average can be equal to the “effective” solution (useful for design of micro-beams). Of course,
in the special case mentioned above (f = —g), all average deviations vanish. However, in this case the
deflection due to shear (not studied here) is dominant.

4. Multiply indeterminate heterogeneous beams
This section generalizes the analysis to the case of a beam with many constraints.
4.1. Field equations

Consider a beam loaded by external forces ¢(x), and additional n simply supported constraints at points
x. (1 <r < n). All dimensions, coordinates etc., are similar to the ones in Fig. 3. The bending moment in
Eq. (3.1) is generalized to

N X
M(x) = ZR,(X —x)H(x —x.) + / q(x1)xy dxy + P(x; — x)H (x; — x). (4.1)
r=1 x1=0
Following the same steps as in Egs. (3.2)—(3.4), we have
1
wx) = / 1 () RDS (1) + g, (0 )R, S(x1)] s, (4.2)
X1:0

where £, and g, are the components of two variable vectors

Srlwx) = (SLPH () —x)(x1 =) Q) (RM) "N 3)

gr(e.1) = (S)L2(r —x)(x1 — %) H (1 —x)H (1) (44)

and the summation convention holds. R®™ is the constraint force vector for an associated homoge-
neous beam having compliance (S). From Eq. (4.2), the N displacement boundary conditions at x = x,
(I<p<N) are

Wy = wlx =x,) = fyr * (I +5)RY + g % (I + )R, = 0; (4.5)
f;)r(xl) = f;’(xpaxl); gpr(xl) = gr'(xpvxl)a (46)

where f and g are second-order tensor functions of one variable (x;). From Eq. (4.4), for the homogeneous
beam, we get, similar to (3.9),

Som* I+ gm*xI1=0, (f+g)*I=0. (4.7)
By definition,
G=gx]/ (4.8)
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is the symmetric, load independent Green’s matrix for the homogeneous, determinate case, where only
concentrated loads at x, exist, i.e., the displacement at one point due to a unit force at the other. Therefore,
g itself is a matrix density function.

Eq. (4.5) in a vector form is

fx(+S5) RY 4g«(+5) R=0 (4.9)
where (-) is the regular one index inner product.
4.2. Calculation of (R)
Similar to the single constraint case, our first interest is to find “how far” is (R) from R®™. Define a
relative difference matrix D by:
R=(1+D) -R". (4.10)
Substitute Eq. (4.10) in Eq. (4.9), and using Eq. (4.8) we obtain:
(f+g)*§’+g*<1+§’)-1)}-R<h>=o. (4.11)
Since RM does not contain statistical information, the expression in brackets must vanish. Therefore,
D=—(g«(I+5)) " -h«S; h=f+g (4.12a,b)
Expansion any function D(E’) around §’ = 0 and averaging yields
=3

+%(S'S) +0(57). (4.13)

Differentiation, using Egs. (4.8) and (4.12) and the symmetry of G we obtain:

Dy=(gx(+S)) " -g-h"-(gx(1+5))"' — (g« (I +5)) ", (4.14)
©) - -
Doy = %DS,_, = G'-g-h-G (4.15)
Therefore
(D)=~ G (g5 Ty . G, (4.16)

where the product between g and h' in Eq. (4.16) contains both inner product and integration.
4.3. Variance of R and the generalized reciprocal relation

By definition
V(R) = (RR) — (R)(R) = ((AR)(AR)); AR =R — (R), (4.17)

where V is a second order tensor. Expansion of R(S) around (S), inserting in Eq. (4.17), the first order
approximation is:

V(R) =Ry (4.18)

,*(S'S) * Ry

o
Note that Eq. (4.17) involves both integration and outer vector product (diad). Now, using Eq. (4.9),
differentiation and inserting in Eq. (4.17) yields
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V(R) = R . [D‘S, % (5'8") « DL, | . R™. (4.19)

Inserting Eq. (4.14) in Eq. (4.19) and using Eq. (4.8), an explicit expression for V(R) is received, which, in
component form is

Vi = (AR, AR = RV G,y (S'S') # 1y G R = V. (4.20)

Taking the dot product on both sides of Eq. (4.20) twice by G, we finally get (in component and vector
forms):

Gon (AR, AR;)Giy = RMhy, + (S'S') % hyyRY, (4.21a)

G- (ARAR)-G = R™. [h «(§'S) * hT} R, (4.21b)

Eqgs. (4.21a) and (4.21b) provides a generalized reciprocal relation: The load variance of the indetermi-
nate, heterogeneous case, operating on the unit displacement matrix of the homogeneous, determinate case,
equals the displacement variance of the heterogeneous determinate case, operating on the load vector of the
indeterminate homogeneous case.

4.4. Displacement average
Inserting Eq. (4.8) in Eq. (4.2) we have
w(x) = R (h, + D,gn) * (I + 5. (4.22)
Perturbation around (S) and averaging yields
(w(x)) =wh (x) + R (Y(g, + I )DE»?:S’E’ «x (S8 + Di?r)j’ « (S'S') * g,), (4.23)
where the derivatives of D, at (S) are given by Eqs. (4.14) and (4.15).

4.5. Displacement variance

For weak heterogeneity (5" < (S)), the first-order approximation for ¥ (w(x)) is Eq. (A.35).

V(w(x;S)) = W_? « (§'S) x w%]/). (4.24)
Using Egs. (4.8), (4.12) and (4.22), and after some algebra,
V(w(x; El)) = [gn * 1] % gn}{G;;hp,Rf,h) * <§/§/> * Rgh)thG;ql}, (4.25)
or, in a more symmetric form:
ViwxS)=y-G' H-G.y, (4.26)
where
= &nx 1y Hy =RV 5 (S'S') x hyR™. (4.27)

Note that H is the displacement variance for a determinate heterogeneous beam, loaded by the “ho-
mogeneous forces”, G is the displacement matrix of a homogeneous determinate beam and 7y is the dis-
placement at x. Therefore, right-hand side of Eq. (4.26) is found from different solutions of determinate
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problems. Another important observation from Eq. (4.25) is that since V' = 0 both for correlation range of
0 and L, there must be a specific range for which maximal displacement variance is obtained.

5. Conclusions

(1) Average values and associated statistical variances can be obtained analytically for weak heteroge-
neity by first-order perturbation.

(2) Average response such as deflections and reaction forces of statically indeterminate micro-beams, are
functions of the structure and the type of loading. Therefore, their values cannot be calculated directly by
using the effective moduli, based on RVE. Specific bounds for the differences between micro- and macro-
beams, and the corresponding load distributions can be found analytically for simple cases.

(3) The above differences, as well as statistical variances, are sensitive to the compliance statistical
correlation range. However, there is always a specific range for which these parameters are maximal.

(4) For weak heterogeneity, statistical parameters of indeterminate cases can be obtained by superpo-
sition of corresponding solutions (both averages and variances) of determinate problems.
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Appendix A. Mathematical definitions and notations

The purpose of the appendix is to lay out different algebraic manipulations needed for the analysis in the
text.

A.1. Products and integration of scalar functions and functionals

Given two functions f*(x;), and g'(x,), of one variable each, three types of products are useful: dyadic
product,

flgt = f1(x)g! (x) = A (xi,xa). (A1)
Inner product:
fogh=r11x)g (@) (A2)

and inner integral product (convolution):
fegh= £l ') = [ 110+ w) (A3)

For functions of two variables (f™, g''), a generalized definition is:

ngH = fH(thz)gH(XhM), fH ° gH = .fH(xlvx2)gH(x27x3)v (A4)

and
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Mgl = /f”(xl,x) * g (x, x;) dx. (A.5)
A “mixed” form is defined similarly
fgts [ 1) g d (A6)

Products of functions of more than two variables will not be used here, so the notations (*), (!') can be
omitted without causing confusion. Define a transpose function by

[ox) = f(o,x)", (A7)
frgt= [ 1 vgte (A3)
The above is equivalent to inner product operations of tensors. For example,
(frg) =g =" (A.9)
If 5 is a two-variable “functionally” symmetric function, we have
s(x1,x0) = s(x2,x1) <= s’ =s. (A.10)

Combining Egs. (A.6)—(A.8), the following double integration form, involving a symmetric function (s),
appears frequently in the analysis

f*s*gT:g*s*fT. (A.11)
Furthermore,
(f+g)>ks*(f+g)T =fasxfl 4205+ f  fgxsxg, (A.12)

which means that any expression like Eq. (A.9) can be written as a sum of “symmetric” forms.
Two types of “unit” operations are used. The first is a one variable function /(x) = 1, for which

fI*IE/fI(X)dX; flol=f" (A.13)
and similarly

Sl = /fll(xl’xz)l(xz)dxz = /fH(xl,xz)dxz, (A.14)

By the same notation, “double integration” is used too:

fog= [ [ ot dn d, (A15)

f“**]] :f”*I*I:/fl'(xl,xg)dxldx27 (A16)
where /1 is the unit dyad. Thus,

IxI=x, (A17)

[allsg = / / £ (e ) (6a)1 (x2) g (x3, x4) doa s (A.18)

= //f(xl,xz)g(x3,x4)dx2dx3 = (f*I)(g" *1). (A.19)
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The second unit operator is a two variable Dirac function d(x;,x,), for which

f'* 0= /f(xl,xz)é(xz,x3)dx2 :f(xl,.Xg) :f (AZO)
and therefore
froxg =fxg. (A.21)

We see that (0) “eliminates”™ integrations, and (/) “separates” them. When specific limits of integration
are involved, a convenient notation is

, b
/*g E/ S (x1,x2)g (%2, x3) dova. (A.22)

For example,

a

by @ by
/ dx3/ S (x1,32)s(x2,x3)2 (x4, x3) doxy Ef*s;EgT. (A.23)
by a 1

ay

Differentiation by the limit points yield the inverse integral operation:
%f%g=fog; %f%gz—fog- (A.24)
A special case of a double integration as in (A.11) is the case where s(x,x3) is non-zero in a small region
() near x, = xs.
frsxg =al(fx6xg")=a(fxg"); o=As*I), (A.25)

where o is some average value in A. Furthermore, for this special case,

f‘:ﬁsbﬁgT :f}js%gT; [e1,¢2] = a1, a2] N [by, by]. (A.26)

ay b

Also, for convenience

fL:kZS—f—gTEszE (f‘ikz)—i-gTE?))s, etc. (A.27)
ai 1 a

1

A special unit operation involving variation is

of xg)
of

where 0 is used both for variation and for Dirac operator.

=0*xg=ag, (A.28)

A.2. Statistical relations of functionals

Consider a functional R(S) of a random function S(x). Two types of averages are defined in text. The
regular (R) and the “homogeneous” one

Ry = R((S)) (A29)

with associated variances
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V(R) = ((R—(R))*) and Wi(R) = ((R—Ru)). (A.30)
By definition, the averages and variances are related by:

Vo=V = (Ry— (R))". (A.31)
For small variations of S around its average,

R(S) = R|s_i5) + R 5 % 05 + 3R ss] ) % %S> + -+ (A.32)

where
OR OR
Rslg #0S=—| *05= [ ——| 0S(x)dx; (A.33)
) 38 | 3S(x) | 5,
&R B OR

R 2 _OR 2 — _ . A.34
Using the above, the first order approximation of V is:

V(R) = (Rs)’ o (A.35)

s

which holds for any tensor function of S.
A.3. Mixed operations with tensors
Consider a function S(x), a vector functional (R(S(x))) and two second-order tensor functions (g(x),

h(x)). Outer (diadic) product is written without any additional symbol

RR - second-order tensor functional with components : R;(S(x1))R;(S(x2)), (A36)
gh — fourth-order tensor function of two variables with components : g;;(x1) % (x2). '

Similarly, tensor inner products are written as
g - h — second-order tensor function with components : g;;(x;)hu(x2), (A37)
g --h" — scalar function with components : g;;(x; )/ (x). '
Convolution product operation is identical with the scalar functional case
g xS — second-order tensor :/g,-j(xl)S(xl)dxl,
(A.38)
g * (SS) x h — fourth-order tensor : /g,-_,-(xl)<S(x1)S(x2)>hk,(x2)dx1 dx,.
The variation of R with respect to S is
O0R = R * S where R is a vector functional of S and a vector function of x. (A.39)
Finally, a mixed operation is also used in the text

— second-order tensor with components

//gij(xl)<S(xl)S(x2)>hjk(x2)dxl dx,. (A.40)
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